
Open-Source Arduino Controller for
Surplus Flatpack2 PSUs

International EME 2024 Conference, Trenton, NJ.

James Morris, W7TXT

In this brief paper, we present fp_util 1, an open source Arduino project for the control and
monitoring of Eltek Flatpack2 PSUs. These devices are suitable for powering typical LDMOS
SSPAs as used in EME communications.

Eltek Flatpack2
These PSUs are commonly available on the surplus and auction markets at relatively low cost,
in the range of USD $50-$100 each. Several variants of these units exist, with power output
ranging from 1500W to 3000W, and nominal DC voltage outputs commonly of 48 V and 24V.
Some variants provide higher voltages; up to 72V. Output voltages are adjustable over a
moderate range, e.g. 43.5V-57.6V for a 48V model. Surplus models are commonly utilized for a
range of DIY projects including chargers for e-bikes and off-grid battery banks. For amateur
radio, they are ideal for many QRO SSPAs, such as LDMOS-based designs which run at 50
VDC or similar. Devices may also be combined, with suitable circuitry, to provide higher current
and/or higher voltage output as needed.

Flatpack2 PSUs are part of a modular industrial system (Smartpack22), where multiple devices
are plugged into a mainframe enclosure, incorporating a controller and networking connectivity
for managing power systems at scale. A typical industrial application would be to charge and
maintain telecoms backup battery systems, with several PSUs combined to handle higher
power levels, and include provisions for fail-over. The specifications claim over 96% efficiency,
and these units include a variety of safety features for handling situations including overloads,
short circuits, and thermal overload.

https://github.com/xjamesmorris/fp_util

Example use of Flatpack2 devices (‘rectifiers’) in a telecoms power system, from the Flatpack2 PS System, SP2
Quick Start Guide2

For amateur use, it is typical to use just one of these PSUs without a mainframe, and set a
constant output voltage for powering an amplifier. In place of the mainframe bus, a custom PCB
is normally used to interface with the device, one end plugging in to the bus slot, and the other
providing connections for AC power input, DC power output, and control signals.

Suitable PCBs may be found online via small hobby electronics stores and of course ebay. In
my experience, a well made PCB for this can be relatively expensive as a one-off ($20 plus
shipping), although it is certainly not a component you would want failing under load. Freely
available designs are available online3, which can be used by hobbyists to make their own
boards or have them manufactured.

Control Bus
The Flatpack devices have no external controls for adjusting voltage or other parameters. If you
obtain one and it is set to the voltage you want, you may simply use it as-is, albeit without
access to monitoring features.

Flatpacks are controlled via CAN bus at 125 kbps. Care must be taken to terminate each end of
the bus with 120 ohm resistors, and to reference the bus against the Flatpack output ground rail
(otherwise your CAN transceiver may be damaged).

Control Protocol
The control protocol is not publicly well-documented, and the author has not been able to obtain
any manufacturer documentation. This project leverages the reverse engineering of other
similar efforts4, as well as the author’s own observations, and aims only to enable a useful
subset of Flatpack2 functionality as would be commonly required for amateur use.

The code should work on most Flatpack2 devices, but has only been tested on the 48/2000 HE
(revision 3.1) model. Corrections or updates are most welcome, via the github project page1.

When attached to a CAN bus and powered up, a Flatpack will start sending “Hello” messages
to enable detection by a controller device. These carry the Flatpack’s unique serial number, and
are transmitted about once every two seconds.

When the controller sees a “Hello” message from a new Flatpack, it assigns a CAN ID and
replies with a “Login” message, containing the CAN ID and the Flatpack serial number. The
device then knows it has been registered with the controller. The Flatpack expects the controller
to send regular “Login” messages, otherwise, it will assume contact has been lost, and reset to
its default configuration. The Flatpack will do this about twelve seconds after last receiving a
“Login” message. The author has chosen to send “Login” messages every five seconds, which
seems to work well.

Once logged in, the Flatpack will start sending “Status” messages, at a rate of about 5Hz, and
continue until it loses contact with the controller. A status message contains the following
values:

● Output Voltage
● Output Current
● Input Voltage
● Air Inlet Temperature
● Air Outlet Temperature

and flags:

● Alert
● Constant Voltage Mode (normal)
● Constant Current Mode
● Walk In (voltage ramping up)

All of these are straightforward, perhaps except for Walk In. When powered on, a Flatpack
ramps up to its default voltage over a period of five or sixty seconds, starting at its lowest output
voltage (43.5 V for the 48/2000 HE). The “walk in” time can be configured when setting the
output voltage (see below).

If the Alert flag is set, the controller may retrieve more details by sending an “Alert Request”
message to the Flatpack, which will respond with an “Alert Response” message, indicating
any of several warnings or alarms (critical). Possible alert values include:

● Over-voltage lockout
● Mains voltage high
● Mains voltage low
● Temperature high
● Temperature low
● Current over limit
● Fan speed(s) low

as well as several internal faults. It is normal to see alarms for low mains voltage and low fan
speeds during power-down, and the “current over limit” warning will be present when in constant
current mode.

The Flatpack’s current operating parameters are configured by sending it a “Set Parameters”
message. The following values may be set:

● Maximum Current: If set below the maximum possible value, enter current limiting mode,
but will not go lower voltage than device minimum.

● Desired Voltage: The output voltage you require. The device ramps to that from the
current voltage, if different.

● Measured Voltage: Unsure, but possibly for remote voltage measurement at load on
devices which may support this (the 48/2000 HE does not).

● Maximum Voltage: This is the over-voltage protection limit, where the device will shut off
output power.

● Walk-In Time: Either five or sixty seconds; takes effect on next login.

Additionally, a “Set Default Voltage” may be sent to the Flatpack, which defines what voltage it
will output on power up or when logged out.

Arduino Project
The fp_util software1 was developed for an Arduno Uno and a CAN bus controller. It will likely
work on other Arduino or compatible devices and a wide variety of CAN bus controllers, with
appropriate modifications if needed.

The author used a Sparkfun CAN bus shield5, which utilizes a Microchip MCP2515 CAN
controller and MCP2551 CAN transceiver.

Sparkfun CAN Bus Shield DEV-13262

Extension headers were soldered in, and the shield was plugged directly on top of the Arduino
Uno. The author added a 3-pin Molex receptacle to carry the two-wire CAN signals and ground
to the Flatpack PCB.

CAN Bus shield plugged into an Arduino UNO.

Programming and serial control is accomplished via a USB connection from a PC to the Arduino
UNO (which includes serial over USB support), via the Arduino IDE.

Software
The initial release of the project is intended to be simple, allowing control and monitoring via a
serial terminal over USB.

A rudimentary command monitor accepts commands for displaying status, setting the default
and current voltages, and running in “monitor mode”, which periodically displays a line of status
values. This latter feature can be used to log and analyze the Flatpack’s operation, and works
with the Arduino IDE’s simple Serial Plotter facility.

Example of the fp_util terminal interface, with command monitor and status output, via the Arduino desktop IDE.

Example of the fp_util monitor mode.

The Arduino IDE’s Serial Plotter when fp_util is in monitor mode.

Limitations and Future Work
There is no support yet for multiple Flatpacks, or setting a current limit (this hard-coded to 40A
for the author’s project, and easily modified at build time). One challenge with current limiting is
that the Flatpack will not perform any limiting if it cannot be done within the specifications of the
device. If, for example, it needs to drop output to 42 V, below its capability, it will not do any
current limiting at all, and just set a warning flag.

The author included a 40A circuit breaker at the output of the Flatpak, and does not recommend
relying on the software for over current protection.

There is currently no display support in fp_util. This would be straightforward to add, say, via a
small OLED device, however, the Arduino Uno used by the author is already close to its
memory limit and needs to be upgraded to a more capable device.

It is possible to add support for touchscreen controllers, wireless, and remote access. The
author does not currently plan to add such features due to time constraints, but welcomes
contributions via the github project page.

Conclusion
For amateur radio operators building high-power systems as typically used for EME, it is
common to utilize LDMOS-based power amplifiers, up to the kilowatt range. Surplus telecoms &
industrial rectifier units such as Eltek Flatpack2 devices are readily available at low cost, and
can be repurposed as the core of a power supply for high power LDMOS amplifiers.

The open-source fp_util project leverages other community efforts, and is tailored for QRO
amplifier power supply scenarios. It provides simple control and monitoring software for
Arduino-compatible controllers when combined with a CAN Bus interface, and may be extended
as needed by the user.

The author’s completed 50 VDC 40A power supply, also featuring 12 VDC output and plenty of room for expansion.
Total cost, excluding the case, was well under $200 USD.

References

[1] https://github.com/xjamesmorris/fp_util

[2] https://www.eltek.com/globalassets/media/downloads/qr/qs-guide-flatpack2-sp2.pdf

[3] https://moonbounce.dk/hamradio/flatpack2-he-interface.html,
https://github.com/neggles/flatpack2-adapter

[4] https://github.com/the6p4c/Flatpack2/blob/master/Protocol.md,
https://openinverter.org/forum/viewtopic.php?t=1351
https://github.com/taHC81/Eltek-Flatpack2-ESPhome

[5] https://www.sparkfun.com/products/13262

https://github.com/xjamesmorris/fp_util
https://www.eltek.com/globalassets/media/downloads/qr/qs-guide-flatpack2-sp2.pdf
https://moonbounce.dk/hamradio/flatpack2-he-interface.html
https://github.com/neggles/flatpack2-adapter
https://github.com/the6p4c/Flatpack2/blob/master/Protocol.md
https://openinverter.org/forum/viewtopic.php?t=1351
https://github.com/taHC81/Eltek-Flatpack2-ESPhome
https://www.sparkfun.com/products/13262

